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Introduction and Description of Contents

In this introductory chapter a description of the aims of the monograph and its contents
is given. The main results are briefly stated in the context of previous publications and
knowledge. The applications of nano-plasmonics presented in the book are outlined.

The publication of this book is intended to meet the considerable recent interest
in subdiffraction light manipulation by plasmon excitations in nanoscale metallic
components [1]. The related rapid development of the new field of nano-plasmonics
overlaps with nanophotonics and new-generation optoelectronics [1–6]. From the
quantum physics point of view, metallic nanoparticles are quite different from semi-
conductor quantum dots (QDs) [7] despite their similar spatial confinement sizes.
In a nutshell: QDs are manufactured nanometre-sized quantum wells that are rel-
atively shallow and do not possess the singularities present in Coulomb confine-
ment. Quantum dots are typically located in semiconductor surroundings and are
able to trap conduction-band electrons, valence-band holes, or excitons from the
surrounding material. They localize electrons in discrete quantum states analogous
to those of atoms, though without the limitation caused by the instability of the
atomic nucleus. Quantum dots can thus be filled with several carriers, electrons
or holes; however, this is limited in practice by the depth of the QD well. The
analogy between QDs and ordinary atoms can be somewhat misleading owing to
the strong dephasing of states in QDs by collective excitations in the surroundings
(mostly phonons). This dephasing occurs because the energy scales of the trapped
carriers in QDs and of the collective phonon excitations in the surrounding crystal
are similar. Hence, the decoherence of QD states (hybridization with collective
band excitations) is, by several orders of magnitude, larger than that in atoms [8].
Nevertheless, the concept of a QD is physically straightforward and allows for easy
and efficient numerical modelling based upon an elementary quantum mechanics
scheme for a small number of particles.
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For metallic nanoparticles the situation is different and is related to the much
more complicated physics of metals. The typical situation for metals is a deep Fermi
sea of nearly free electrons with a well-defined Fermi surface even at high tempera-
tures; the Fermi energy in metals, of the order of 104 K, greatly exceeds the melting
temperature. The theory of metals was developed for bulk metals in the 1960s by
the application of advanced methods for multiparticle systems, mostly in terms of
the Green function approach [9]. The quantum degeneracy of the dense Fermi liquid
of electrons in metals (actually the degeneracy of the Landau quasiparticles, which
are stable on the Fermi surface [9]) makes a finite metal sample confined at the
nanoscale a quantum system very different from a QD low-populated with band
carriers in semiconductors. In metals, the crystalline positive ion background that
is essential for the definition of the related quantum states causes an additional
complication. There have been many successful attempts to describe the excitations
in metals using quantum statistical physics and many-body theory methods [9–11]
or a quasiclassical phenomenological approach [12, 13].

Besides the low-energy excitations near the Fermi surface in metals (i.e., the
electrons that can be expressed in terms of so-called Landau quasiparticles [9, 11]),
there exist also collective high-energy excitations involving all the electrons simul-
taneously, not just those located close to the Fermi surface. For a bulk metal, an
efficient theory for these high-energy collective excitations of electrons in metals
was developed in 1952, within the random phase approximation (RPA) approach,
by Pines and Bohm [14, 15]; these high-energy collective excitations were called
plasmons. Owing to the large energy difference between plasmons and the Landau
quasiparticles close to the Fermi surface, plasmons do not interact with the Lan-
dau quasiparticles, although all the electrons collectively create plasmons. Thus,
plasmons cannot be excited just by low-energy electrons, as the plasmon energy in
a bulk metal is typically of the order of 10 eV, exceeding even the Fermi energy,
which is usually of the order of 7−8 eV. The plasmon energy is thus of a scale
similar to that of ultraviolet (UV) photons, and so plasmons can be excited by
sufficiently hard electromagnetic radiation.

However, in confined metallic nanoparticles the energies of plasmons are con-
siderably lower [17–21], and in noble metals (Au, Ag, Cu) they fit with the visible
photon energies. This observation sparked the nanotechnology revolution related
to the modification and control of visible light by plasmons in metallic nanostruc-
tures [1–6] whose spatial size is much lower than the wavelength of light, referred
to as subdiffraction light manipulation. It should be noted that plasmas and their
excitations were the subject of interest early in the twentieth century [18] and since
then have been investigated in relation to high-energy plasmas of charged particles
(mostly protons) in stellar kernels, tokamaks, galaxy ion clouds, and the ionosphere.
This interest has been stimulated also by the development of over-horizon radar and



Introduction and Description of Contents 3

anti-radar technology, which has been accelerated in recent years by achievements
in metamaterial construction (such as an ‘invisibility cloak’) allowing control over
light in a manner different from ordinary reflection and refraction.

The main objective of this book is to present an effective theory of plasmons in
metallic nanoparticles that is as analytical as possible, allowing universal applica-
tions that are not restricted to previously studied numerical models. The numerical
methods developed in the 1980s for ab initio approaches to plasmons in metallic
clusters were limited to approximately 300 electrons (owing to the high numerical
complexity of the solution of the Kohn–Sham equations) [19, 20]. In view of these
problems, insights into the plasmonics of metallic nanoparticles were confined to
phenomenological approaches; these approaches used experimentally aided mod-
elling [22] of the dielectric function in the solution of the classical Fresnel–Maxwell
equations for the boundary problem of a metallic nanoparticle with spherical geom-
etry and an incident planar wave. The analytical solution of this problem is known
as the Mie approach [17, 18] and results in formulae for the scattering and extinction
cross sections for light incident on a metallic sphere.

However, the Mie approach uses a phenomenological dielectric function for
the metal as a prerequisite to model light absorption in the metallic nanoparticle
(according to the conventional Drude–Lorentz model) [17]. The same approach is
used for the numerical solution of the Maxwell equations with boundary condi-
tions in the COMSOL system (which is not limited to spherical geometry); this
utilizes the finite element method to solve the Maxwell equations. The COMSOL
calculus includes the plasmon dynamics only phenomenologically, via a predefined
dielectric function of the metallic compound. However, recognition of the plasmon
properties of metallic nanoparticles is not available in either of the aforementioned
approaches, which is a significant drawback. Therefore, progress in the description
of plasmon excitations in metallic nanoparticles within a microscopic framework,
preferably in an analytical form, may have considerable significance for improving
upon the very popular Mie-type and COMSOL methods. Upgrading these classi-
cal methods may consist in a better declaration of the dielectric functions of the
objects under study, since these functions are prerequisites for both the Mie and
COMSOL calculus. The modelling of dielectric functions at the nanoscale is a
source of certain discrepancies between the numerical solutions and experiments
because a predefined dielectric function is usually supported by experimental data
that come from bulk metals or thin films, rather than from nanoscale particles. Thus,
theoretical insights into the properties of plasmons at the nanoscale that include
quantum effects are necessary to improve the conventional numerical models. This
can be done via the development of a microscopic quantum model for surface and
volume plasmons in metallic nanoparticles using the RPA approach [16] for finite
nanoscale geometries [23], in a generalization of the Pines–Bohm theory [14–16].
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We will demonstrate this approach in the present text and describe an analyti-
cal description of all the multipole modes (for spherical symmetry) for surface
and volume plasmons within the RPA model that agrees well with experimental
observations.

Surface plasmons in a metallic nanoparticle correspond to the translational
collective oscillation modes of all the electrons in the nanoparticle when the charge
fluctuations that are not compensated by the static positive ion jellium occur only on
the nanoparticle surface. This condition is in contrast with volume plasmons, which
are compressional-type modes with charge density varying along the nanoparticle
radius. Remarkably, the surface plasmons in nanoparticles have resonance energies
lower than the energy of the bulk plasmons, i.e., h̄ωp = h̄

√
ne2/(mε0) (n is the

electron density in the metal, e and m are the electron charge and mass, and ε0 is
the dielectric constant); for the simplest case, that of dipole-type surface plasmon
oscillations, h̄ω1 = h̄ωp/

√
3 (the Mie energy). However, the volume plasmons in

nanoparticles have resonance energies higher than those in the bulk. Neither type of
plasmon excitation – the surface or the volume plasmons – occurs in the bulk metal
(although for a half-space geometry there are surface plasmons at the so-called
Ritchie frequency, ωp/

√
2 [5]).

The essential difference between the RPA Pines–Bohm model for bulk metals
[16] and the RPA theory for metallic nanoparticles consists in the explicit definition,
in the latter theory, of the finite rigid jellium (defining the shape of the nanoparticle)
[23]. In the RPA Pines–Bohm theory, the infinite jellium in the bulk is renormalized
out via an ideal compensation with a uniform long-wavelength coherent electron
fluctuation (i.e., a uniform plasmon mode with momentum q = 0). For a finite
nanoparticle, however, such a renormalization is impossible because of the absence
of translational invariance and the presence of quantum numbers that are differ-
ent from momentum quantum numbers for the plasmon excitations, owing to the
explicit presence of the jellium rim.

The quantum dynamics equation in the Heisenberg representation determines
the self-modes for collective local charge density fluctuations [16, 23]. The gradient
operator in the kinetic energy term produces Dirac delta singularities on the rim of
the jellium; these arise from the derivative of the Heaviside step functions defining
the jellium border. Because these singularities are located on the edge of the
nanoparticle, they allow separation of the surface and volume plasmon components
in the dynamics equation [23]. However, a mutual dependence of the two types
of excitation is visible within the RPA approach. Moreover, the problem of the
so-called spill-out of the electron liquid beyond the rim of the jellium can also
be considered in the RPA theory. Nevertheless, the spill-out appears to be on
the scale of the Thomas–Fermi length [19] and is thus unimportant for nanopar-
ticles with a radius larger than about 5 nm, though for smaller nanoparticles
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(of size 2−3 nm) the spill-out considerably dilutes the electron density inside the
cluster and redshifts the resonance plasmon frequencies, which are proportional
to the square root of the charge density [19–21]. Surface effects such as spill-out
and Landau damping [20] (the latter corresponds to the decay of plasmons into
a pair of quasiparticles distant from the Fermi surface and thus unstable) become
less important for larger nanoparticle sizes, and for nanospheres with radii larger
than 5 nm these surface effects are negligible [20]. The reduction in the role of
spill-out (which makes the surface fuzzy and perturbs the surface modes) for
particles larger than a few nanometres in radius supports the usability of the RPA
approach in a quasiclassical way: it is a sufficiently accurate quantum approach at
this nanoparticle size [23] as it allows the separation of volume and surface local
electron density fluctuations. In ultrasmall nanoparticles [19], mixing of the surface
and volume excitations occurs for up to approximately 60 electrons, when shell
effects cease to contribute [19, 21]; for larger nanoparticles the separation between
the surface and volume excitations improves for greater numbers of electrons [23]
and is almost ideal for nanospheres with radii larger than approximately 5 nm.
The quantum dynamics equation (the Heisenberg equation for the second-order
time derivative of the local electron density operator [16, 23]) has a complicated
form owing to the presence of the finite jellium. However, after making the RPA
simplification, including a quasiclassical averaging of the kinetic energy according
to the so-called five-thirds Thomas–Fermi formula [16]), this quantum dynamics
equation describes a plethora of plasmon modes in the nanoparticle [16], many
more than the single volume mode of the bulk metal [16].

An important advantage of the RPA model developed in this book is the pos-
sibility of including dissipation effects such as those due to electron scattering on
other electrons, on phonons, on admixtures and defects or on the boundary of the
nanoparticle. The resulting shift in the plasmon resonance caused by the scattering
damping of plasmons scales as 1/a, where a is the radius of a nanoparticle [24],
which agrees with experimental observations for the radius range 5 < a < 10 nm
(for Au in a vacuum), where electron scattering energy dissipation dominates other
damping channels [25].

Nevertheless, plasmon oscillations are also damped by radiation, an effect that
increases with the electron number in a nanoparticle and leads to pronounced cross-
over in the size dependence of the plasmon attenuation and the related resonance
shift for nanosphere radii a of 10−12 nm (for Au in vacuum, in general the cross-
over depends on the metal and the dielectric surroundings). At nanoparticle sizes
corresponding to this cross-over, the decrease in the plasmon damping as 1/a
changes to a strong increase proportional to a3 [26], the a3 dependence is related to
the fact that all the electrons participate in plasmon oscillations and their radiation
properties; this is true even for surface plasmons.
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Thus, the contribution of all the electrons in a nanoparticle is manifested by
the volume factor a3, which causes a similar scaling in the radiative damping of
plasmons resulting from the so-called Lorentz friction [26], i.e., the energy loss of
oscillating charged particles due to the radiation of electromagnetic waves. For a
sufficiently large number of electrons inside the nanosphere, the Lorentz friction
losses dominate other channels of plasmon damping. The large radiation energy
loss expressed by the Lorentz friction damping initially grows with a3, as men-
tioned above [27], but then saturates at approximately a ∼ 50 nm (for Au in
vacuum) and gradually decreases for larger nanoparticles. This behaviour is identi-
fied and described in this text.

Such behaviour reveals that the inclusion of Lorentz friction considerably
changes the plasmon oscillation regime: the oscillations are not of the harmonic-
oscillator type because the Lorentz friction is proportional to the third-order
time derivative rather than the first-order time derivative as is the case for the
ordinary friction of a harmonic oscillator. The harmonic oscillator model appears
to be incorrect for plasmons in large metallic nanoparticles, and many simplified
harmonic models of plasmons that are popular in the literature are misleading. In
particular, the overdamped regime typical for harmonic damped oscillators, which
would terminate plasmon oscillations within the harmonic model at approximately
57 nm, for Au in vacuum, does not reflect reality. The solution of the third-order
dynamic differential equation is different from that for a harmonic oscillator, and
the relationship between the frequency and damping of a harmonic oscillator,√
ω2

0 − 1/τ 2 (which defines the overdamped regime when the expression under the
square root is negative), is not valid for plasmons. Beyond the harmonic model the
relationship between frequency and damping also has an analytical form, which
has been derived and which allows us to describe plasmon behaviour precisely.

The exact solution of the Lorentz friction problem for plasmons in metallic
nanoparticles [26] gives very good agreement with experiment, with respect to
the size dependence of plasmon resonances in metallic nanospheres. This result
provides more precise modelling of metal dielectric functions, for specific sizes
of nanostructure configurations, that includes plasmon damping and has also been
applied to modify numerical studies using COMSOL and Mie-type calculation
schemes [28, 22, 29], in both cases these schemes use predefined dielectric func-
tions for the systems analysed. The results have been confirmed experimentally for
Au and Ag nanoparticles.

The RPA theory of plasmons in metallic nanoparticles and their radiative
properties is useful for modelling the so-called plasmon-aided photovoltaic (PV)
effect. The damping of the plasmons changes radically when another electrical
system is located near a metallic nanoparticle with plasmons; such a system could
be a semiconductor substrate with a band electron system. In such a case, the
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semiconductor substrate receives an extremely strong flow of energy from the
plasmons to the band electrons, which corresponds to plasmon damping greatly
exceeding the Lorentz friction losses in the dielectric surroundings. This new
and strong channel of energy transfer can be described by applying the Fermi
golden rule to the quantum interband electron transitions induced by the near-
field radiation of plasmons in a metallic nanoparticle deposited on a semiconductor
substrate [30]. The mediation by plasmons in the energy harvesting of a photoactive
semiconductor layer results in significant modification of the ordinary photoeffect.

This phenomenon is of high practical importance in view of the current rapid
development of photovoltaics; in 2015, the total power of all PV solar cell installa-
tions worldwide was approximately 250 GW, whereas the total power produced by
conventional coal or gas energy plants was approximately 29 GW in Poland. There
could be an increase in the efficiency of solar cells (particularly thin-film solar
cells and organic ‘plastic’ cells) by several per cent due to mediation by plasmons
in metallic nanoparticles deposited on the cell surfaces (metallic coverings with
low densities, ∼ 108−10/cm2 and thus low costs and easy accessibility for industry
technology) [31]. This could have a large economic impact in the field of renewable
energy sources [32–36].

In Au, Ag, and Cu nanoparticles with radii a ∼ 10−50 nm the photoeffect
efficiency is enhanced, in laboratory setups of photodiodes, by a factor 2−10
owing to energy transfer from the incident photons to the semiconductor substrate
via plasmons in the deposited metallic components [31–36]. However, in solar
cells the efficiency of the photoeffect is only one factor amongst many other factors
that define the final total efficiency of a cell, and a large increase in photoeffect
efficiency causes a more modest increase in the total efficiency of a solar cell.

Through the quantum calculus of the Fermi golden rule scheme, we can demon-
strate [30] that the near-field coupling of the dipole mode of the surface plasmons in
metallic nanoparticles deposited on top of a semiconductor is very efficient, i.e., this
coupling effect causes a strong increase in the probability of interband transitions
compared with the ordinary photoeffect, in which the plane-wave photons inter-
act directly with the band electrons. The advantage of the result obtained via the
Fermi golden rule approach is its analytical form (which is similar to the formula
for the ordinary photoeffect in a semiconductor, though the calculus for plasmon
mediation is much more complicated; however, it is analytically attainable [30]).
The analytical form of this approach allows for the analysis of various competing
mechanisms, and leads to an expression for the photoeffect efficiency increase due
to plasmons in solar cells.

The related calculations explicitly demonstrate that the absence of translational
invariance for a nanoparticle coupled in a near-field zone with a semiconductor
substrate removes the constraints imposed by the momentum conservation rule.
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Thus, in addition to the vertical interband transitions (conserving the electron
momentum plus the negligible photon momentum) found in the ordinary photoef-
fect, all indirect interband transitions between arbitrary electron momenta are avail-
able, which strongly enhances the probability of interband transition. The momenta
of incident photons with energies beyond the forbidden energy gap are negligible
compared with the momenta of the Bloch states of the band electrons in a semicon-
ductor, which results in a constraint to ‘vertical’ interband transitions in the ordinary
photoeffect. This constraint is removed when the translational symmetry is violated
for a small metallic nanoparticle. The coupling of the plasmon dipole in the near-
field regime allows all skew interband transitions, enhancing the total probability of
interband excitations of carriers in the semiconductor substrate. This effect favours
smaller metallic nanoparticles but, conversely, larger nanoparticles have larger
dipoles (in proportion to the electron number), which also enhances the transition
probability. The resulting trade-off of these opposing tendencies defines the
optimal size for a metallic nanoparticle to increase the photoeffect efficiency.
Moreover, the type of nanoparticle deposition used plays an important role. Though
problematic from a technological perspective, a convenient deposition method is
the complete embedding of the metallic nanoparticles into the semiconductor
layer. The theory has been developed to allow analysis of the aforementioned
size trade-off and of the role of the nanoparticle deposition method on the
photodiode surface.

Energy transfer through the coupling of the subphoton near field (i.e., the
near field on a length scale 10−100 times smaller than the photon wavelength)
with the surface plasmon dipoles is very efficient. This high efficiency results
in high damping of the plasmons, much higher than the radiative damping due
to Lorentz friction and the damping due to electron scattering [23], and elu-
cidates the very strong plasmonic PV effect that is observed experimentally.
The prospects for large-scale utilization of this effect in industry and com-
mercial photovoltaic devices depend on the practical deposition methods for
nanoparticles on cell surfaces, which usually reduce the net effect as too high
a density of metallic particles results in inconvenient interference reflection
effects of the metallic nanocover. Nevertheless, at low surface concentrations
of the metallic nanoparticles, the theoretically determined resonance curves
agree very well with the experimental results [30, 31, 33]. Another experiment
elucidated by the theory concerns a two-layer structure of Si–ZnO nanopillars,
consisting of a thick layer of p-Si covered with n-ZnO vertical nano-rods with
diameters ranging from 200 to 300 nm and heights of approximately 1000
nm [30]. When the top of the structure was covered with silver nanoparticles
(with radii of 5, 20, or 50 nm), the photoresponse doubles. This increase is
caused in part by ZnO subgap transitions but also by the Si substrate; this is
revealed by the characteristic size dependence. This proves that the range of the
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plasmonic effect is at least 1 micrometre, which makes the effect convenient for
thin-layer solar cell technology [34–36]. Multi-crystalline Si solar cells sparsely
covered with nanoparticles have recently shown very good agreement with the
predictions of the theory; the gains in efficiency have reached 5.6% for Au
nanoparticles and 4.8% for Ag nanoparticles, whereas, for CIGS (copper indium
gallium diselenide) cells, gains of 1.2% (Au) and 1.4% (Ag) have been achieved
[31]. Many other, even greater, experimental results have been reported. However,
as mentioned, an excessive concentration of metallic covering diminishes the
efficiency of solar cells (owing to screening and reflection effects).

The successful theoretical RPA description of plasmons in a single metallic
nanoparticle and the recognition of their radiative properties allows for the develop-
ment of the RPA model for interacting systems (arrays) of metallic nanoparticles, in
particular for metallic nano-chains that could serve as low-loss plasmon–polariton
wave guides for the desired miniaturization of optoelectronics. Plasmon–polaritons
are collective wave-type modes of surface plasmons hybridized with an electro-
magnetic wave propagating, with almost lossless kinetics, along a periodic chain of
metallic nanoparticles. They are analogous to the surface mode of plasmon propa-
gation along a metal–insulator interface, also called a plasmon–polariton [1, 5].

The change in the configuration of the electromagnetic field near the metal–
insulator interface around a metallic wire is utilized in high-frequency microwave
techniques (e.g., in single-wire Goubau transmission lines [37]). This effect raises
an interesting issue for similar propagation along discrete metallic nano-chains
[38–43] – experiments confirm the lossless propagation of dipole collective wave-
type oscillations in the range of several micrometres [39, 40] with group velocity at
least 10 times lower than c (the velocity of light). The latter property allows for a
reduction in the diffraction constraints [38] that severely limit the miniaturization of
the opto-nanoelectronics, where the wavelengths of photons with energies typical
for the nanoelectronics scale (meV) greatly exceed the dimensions of the nanoscale
electronic elements (because of the high value of c), precluding miniaturization.
The transformation of the electromagnetic signal into a plasmon–polariton, which
has the same frequency but a 10 times (at least) shorter wavelength, allows the
avoidance of diffraction limits. This is promising for future nanoscale plasmon
optoelectronics [5, 38, 42].

An analysis has been developed of the plasmon–polariton kinetics inhmkujkj
metallic nano-chains using a far-reaching analytical formulation of the RPA theory
[44–46] (which has made significant progress in comparison with numerical-only
studies [41, 43]). This analytical formulation allows the precise identification of
various factors that were previously resistant to insight within complex numerical
approaches [42, 43]. These factors are related to detailed identification of how the
damping and the group velocity of plasmon–polaritons depend on the material and
geometry parameters.
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In particular, it has been demonstrated that the accurate inclusion of all terms
in the dipole interaction in the near-, medium-, and far-field zones, together with
retardation effects (frequently neglected in the literature), leads to ideal compensa-
tion of the Lorentz friction in each nanosphere in a chain by the radiation energy
income from the remaining nanoparticles in the chain [46]: thus the propagation
of plasmon–polaritons in the chain is radiatively lossless. Taking into account that
the Lorentz friction in a large metallic nanosphere, with radius > 12 nm, for Au in
vacuum, greatly exceeds the electron scattering energy losses (i.e., the irreversible
dissipation of plasmon energy into Joule heating due to scattering from electrons,
phonons, admixtures, defects, and boundaries), a metallic nano-chain behaves
as an almost lossless ideal wave guide for plasmon–polaritons [46]; this agrees
with experimental observations [39, 38] and indicates possible applications in sub-
diffraction plasmon-optoelectronics due to the low group velocity (and wavelength)
of plasmon–polaritons.

The RPA model developed for plasmon–polaritons [46] shows that this ideal
compensation of the Lorentz friction occurs only inside the light cone (on which
the plasmon–polariton phase velocity equals the velocity of light); outside the
light cone the damping of plasmon–polaritons is strengthened to values above the
Lorentz friction scale (this damping outside the light cone increases steadily with
increasing plasmon–polariton wave number for longitudinal plasmon–polariton
polarization, when the dipoles oscillate along the chain direction, and increases
stepwise for transverse polarization [47, 45]).

On the light cone (in one dimension there are only two points in the Brillouin
zone for a periodic chain – the light cone here is a triangle as a function of
the chain separation), a logarithmic singularity of the dynamics equation occurs
[45]. This singularity is caused by constructive interference of the radiation from
the nanospheres in the chain in the far-field zone and occurs only for transverse
polarizations of the plasmon–polaritons; it causes a similar divergence at all orders
in the perturbation series for the dispersion [45]. The logarithmic perturbative
divergence in the dispersion of the plasmon–polaritons in turn causes a hyperbolic
singularity in the group velocity for transversely polarized plasmon–polaritons,
which is observed in many numerical simulations presented in the literature (in a
numerical solution of the dynamics, a certain kind of perturbative solution is linked
with an unavoidable truncation of the exact infinite Green function series, which
produces a numerical artefact that has been erroneously interpreted as superluminal
propagation).

The aforementioned error has been explained in detail and is not present in an
exact solution of the dynamic equation for plasmon–polaritons obtained using
a special nonperturbative method (i.e., by separate solution of the nonlinear
problem at approximately 20,000 points of the Brillouin zone by a Newton-type



Introduction and Description of Contents 11

procedure) which allows for determination of the dispersion and the damping of the
plasmon–polaritons beyond any perturbative step [45]. This solution has revealed
the precise removal of the ‘perturbative’ singularity in the group velocity (which is
hyperbolic for transverse polarizations) via its truncation at the velocity of light in
the dielectric surroundings, which agrees with Lorentz invariance.

Other singularities in the group velocity of the plasmon–polariton were also
identified for both polarizations; these singularities occur also on the light cone, are
of logarithmic character, and are caused by constructive interference in the medium-
field zone in the dynamics equation for plasmon–polaritons [45] (again manifesting
themselves at any perturbation order, these singularities correspond to the derivative
with respect to the wave number of the medium-field-zone contribution to the
self-frequency, which is logarithmically divergent at the light cone). Via the exact
nonperturbative solution, it was demonstrated that these group velocity singularities
(without any dispersion singularities) are excluded and truncated exactly at the
velocity of light. This analysis elucidates the misleading interpretations of numer-
ical approximate simulations as being due to artefacts caused by the perturbative
approach. An interesting analogy might be drawn: in quantum field theory, sin-
gularities occur at any order of the perturbation series but these singularities can
be removed by renormalization procedures. Hence, the problem analysed above of
plasmon–polariton dynamics is actually an example of explicitly performed renor-
malization via the exact solution of the highly nonlinear singular problem, regular-
ized by Lorentz invariance.

In a similar manner, the problem of the numerically observed long-range
plasmon–polariton modes close to the light cone is explained. In contrast with
the explanation in the literature, of an extraordinary mode with lowered damping,
the longer-range modes can be identified with a local increase in the group velocity
for a thin wave packet close to the truncation singularity; this gives a range of
propagation several times longer at the same level of damping. By analysis of the
convergence of an appropriate series related to the radiation effects in the chain,
the small impact of the finiteness of the chain on the plasmon–polariton kinetics
was demonstrated and thus the usability of the infinite-chain results for finite-
length periodic structures (even 10 periodic elements in the chain yield almost the
same plasmon–polariton behaviour as an infinite chain, owing to the very quick
convergence of the radiation series, except for those series resulting in singularities
but these types of series do not occur in finite chains).

The theory developed for plasmon–polaritons in a metallic nano-chain demon-
strates the propagation of a collective surface plasmon mode with the whole
electromagnetic field compressed along the chain (which agrees with COM-
SOL simulations and near-field scanning optical microscopy (SNOM)) [39, 40].
Owing to the incommensurability of photon wavelengths and the wavelengths of



12 Introduction and Description of Contents

plasmon–polaritons with the same energies, any mutual perturbation of both these
excitations is precluded; thus the detection, excitation, or perturbation of plasmon–
polaritons by free photons is not possible, which makes plasmon–polaritons
immune to electromagnetic perturbations. Moreover, the lossless subdiffraction
plasmon–polariton mode controlled by the chain parameters might be able to sense
nanodeformations due to strain in various mechanical constructions. This could
be done by the use of elastic substrates with metallic nano-chains simply pasted
onto the strained elements, stepwise changing the regime of the plasmon–polariton
kinetics, which are very sensitive to small changes in nanoparticle separation due
to length deformation of the substrate.

This effective microscopic RPA-type theory of plasmons and plasmon–polaritons
in metallic nanostructures creates an opportunity for the development of similar
approaches for other (ionic) charged multiparticle systems. The plasmon and
plasmon–polariton RPA theory of metallic nanostructures has been applied to
ionic plasmons and plasmon–polaritons in finite electrolyte systems (confined by
the dielectric membranes that are frequently found in bio-cell organization) [48].
This generalization involves the following steps. (a) The accommodation of the
RPA model defined for a finite quantum degenerate Fermi liquid of electrons in
a metal to a Boltzmann-type nondegenerate liquid of ions (fermions or bosons)
requires substitution of the so-called 5/3 Thomas–Fermi formula for a degenerated
electron gas by a classical estimation of the average kinetic energy according to
the Maxwell–Boltzmann distribution; simultaneously, the Fermi velocity must be
substituted by the Boltzmann average velocity of ions. These changes introduce a
specific temperature dependence that is absent in the metallic RPA model. (b) The
core element of the ionic theory of plasmons is the introduction of an auxiliary
fictitious two-component ‘jellium’ for a binary electrolyte. In any electrolyte, ions
of both signs are dynamical components of the system, unlike in metals, where the
positive jellium in the form of the crystalline lattice defines a stiff shape for the
nanoparticle. Nevertheless, by modelling the Hamiltonian for a binary electrolyte,
a fictitious jellium with two components whose charges mutually cancel can
be introduced without any change in the total energy. For sufficiently small local
charge excitations in the electrolyte, the two-component fictitious jellium model
allows for a description of plasmon excitations that is in analogy with that for
metals, in the form of two mutually coupled ionic excitations.

This model admits the classification of volume and surface ionic plasmons
(compressional and translational modes, respectively) with various polarizations
for spherical symmetry and the estimation of their energy and damping in analogy
to that for metallic nanoparticles. Because ions have larger masses than electrons
and typically have lower concentrations in electrolytes compared with the free
electron concentrations in metals, the characteristic plasmonic size scale (defined
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as the size of a finite system with maximal plasmon radiation) is on the scale
of micrometres for ions rather than the nanometre scale of electrons in metals,
and the plasmon frequency is strongly reduced by many orders of magnitude
depending on the ion concentration and the ion mass and charge. All the elements
of the RPA model generalized to finite ion systems have counterparts in metals,
including the characteristic and typical behaviours of surface and volume plasmons
(however, the latter exhibit a temperature dependence for ions that is absent
for electrons in metals). There are similar radiation effects, including a Lorentz
friction loss that is larger than ordinary scattering losses (for ions it depends
on the temperature in a quite different way than that for the electron archetype
owing to the substitution of the practically temperature-independent Fermi veloc-
ity of metals by the temperature-dependent averaged velocity of the ions in
an electrolyte).

In addition to the plasmon excitations in a separated single finite electrolyte sys-
tem, a theory of ionic plasmons on finite periodic ionic systems with ionic plasmon–
polaritons was developed [49]. In analogy to plasmon–polaritons in metallic
nano-chains, similar properties were described for ionic plasmon–polaritons in
periodic ionic microchains. The wave guide kinetics of plasmon–polaritons in
ionic chains was analysed with respect to a wide range of ion parameters and
confinement scales including overlap with additional specific vibrational and
rotational excitations of the electrolyte’s solvent molecules (of water).

The plasmon–polariton model of a chain of finite electrolyte systems was next
applied to the original explanation for so-called saltatory conduction in myelinated
axons. The intention was to explain using ionic plasmon–polariton kinetics the
unknown and mysterious mechanism of the quick and efficient nervous signal
transduction observed in periodically myelinated axons in neurons of the peripheral
nervous system and in the white matter of the brain and spinal cord [50, 51]. The
standard cable model [52] (originated by William Thomson in the nineteenth
century) describes well the diffusion-type kinetics of the ionic electrical signal
along the dendrites and nonmyelinated axons (in the grey matter in the central
nervous system). According to the cable theory, the velocity of a signal depends on
the conductivity of the inner-neuron cytoplasm and on the capacity across the cell
membrane between the inner and outer cytoplasm; it is stiffly confined, and reaches
at most 1−3 m/s. This signal velocity is too low for the transduction of nerve signals
over longer distances; moreover, in myelinated axons, which are periodically
wrapped with a white lipid called myelin, the action potential somehow jumps
between the consecutive so-called Ranvier nodes separating the segments wrapped
with the myelin sheath. In this way, the signal accelerates and the velocity reaches
the 100−200 m/s required for proper signalling and functioning of the body. The
mechanism of these jumps is unknown, having been researched for a long time
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without progress, and is phenomenologically designated ‘saltatory conduction’.
It is agreed [50, 51] that the myelin sheath is crucial for saltatory conduction: the
myelin is much thicker than would be needed for isolation only; moreover, any
deficit in the thickness of the sheaths results in severe demyelination diseases such
as multiple sclerosis, manifesting itself in slowing saltatory conduction and motor
dysfunction. Myelin is produced for neurons in the peripheral nervous system by
Schwann cells, whereas in the central nervous system oligodendrocytes produce
the necessary myelin [51, 50]. Remarkably, the length of myelinated sectors is
typically 100 μm and, as mentioned above, the myelinated sectors are separated
by very short nonmyelinated fragments called Ranvier nodes [51, 53]. In the
Ranvier nodes spikes of the action potential form, according to a well-known
mechanism, on a time scale of a few milliseconds [50], but the mechanism by
which the ignition signal jumps to the neighbouring Ranvier nodes cannot be
explained by any accepted model based on the cable theory. We proposed an
original assumption, that saltatory conduction in neurons periodically wrapped
with the thick myelin sheath has an ionic plasmon–polariton character. We then
obtained a satisfactory prediction for the signal velocity at realistic parameters for
the electrolyte of the neuron cytoplasm. The model achieved good consistency
with the various features of saltatory conduction observed in myelinated axons
[49], including the following. (a) A high group velocity for the plasmon–polariton
wave packet in agreement with the velocity observed in myelinated axons and
real electrolyte parameters inside the axon. (b) There is an absence of radiative
damping of the plasmon–polaritons and the reduction of attenuation to the level
of only ohmic losses (lower than those for ordinary conduction); with only low
energy supplementation (which occurs at the Ranvier nodes) a forced undamped
plasmon–polariton mode can propagate without deformation over arbitrary long
distances. (c) The energy supplementation takes place residually, at the generation
of action potential spikes on consecutive Ranvier nodes, according to a known
[50] mechanism. This mechanism employs ion channels across the unmyelinated
axon cell membrane at the Ranvier node. It is the final phase of a cycle during
which steady conditions are restored, and so an external energy supply is needed
to actively transfer ions (Na+ and K+) across the cell membrane against the
concentration gradient. The energy is supplied by the ADP/ATP mechanism in
the cell and residually also covers the ohmic losses (ultimately transferred to
Joule heat) of plasmon–polaritons. (d) The wave nature of saltatory conduction is
confirmed by the observation that axon ignition is maintained even if the axon is
broken into two separate pieces located near each other (this property is impossible
to explain within the cable theory or on the basis of other electrical-current-
type mechanisms but fits reasonably well with properties of plasmon–polaritons,
which can propagate either along a continuous fibre or along a discontinuous
chain) [50]. That plasmon–polaritons have a wave nature also agrees well with
the observed one-way direction of propagation when an axon is initiated from the
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synapse or axon hillock and two-way propagation when a passive neuron is ignited
from its centre. The plasmon–polariton mechanism is also consistent with the
observation that axon firing continues even if several Ranvier nodes are damaged
and inactive [50]. (e) The model gives a temperature dependence that is typical
for ionic plasmon–polaritons, and it also gives the dependence of the plasmon–
polariton group velocity on the cross section of the thin inner cord of the axon.
The role of myelin, different other than giving insulation, is explained by the
plasmon–polariton model (a sufficiently thick myelin sheath is required to build
the dielectric tunnel around the inner cord needed for the formation of a plasmon–
polariton; decreasing the thickness of this myelin tunnel results in the deceleration
of plasmon–polariton propagation, which is actually observed in multiple sclerosis)
[50]. (f) The model is also consistent with the exclusive property that plasmon–
polaritons cannot be ignited, perturbed, or detected by electromagnetic waves
(since photons with low energies identical to those of ionic plasmon–polaritons do
not interact with plasmon–polaritons), and therefore, plasmon–polariton signalling
is immune to electromagnetic perturbations (note that ordinary current conduction
in the grey matter can be detected by electromagnetic means (encephalography)
and can even be perturbed electromagnetically, but signalling in the white matter
cannot). Application of plasmon and plasmon–polariton effects in ionic systems
opens a new field, that of the soft plasmonics of confined electrolytic systems in
relation to bio-matter organization and its functionality. The example presented
above illustrates the usefulness of the developed RPA model of plasmons and
plasmon–polaritons.
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